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Abstract

We generalize wave maps to exponential wave maps. We compute the first and second variations of the exponential energy, and
obtain results concerning the stability of exponential wave maps. We prove a theorem which relates wave maps, exponential wave
maps, and the conservation law of second-order symmetric tensors. We show that if f is an exponential wave and a pseudo-weakly
conformal map, then f is homothetic. We finally discuss the applications of exponential wave maps in relativity.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Wave maps are harmonic maps on Minkowski spaces. We first studied Gu’s paper [10] concerning harmonic
maps on two-dimensional Minkowski spaces and became interested in wave maps. In this decade, there have
been many new developments in wave maps achieved by Klainerman, Machedon [15–17], Shatah, Struwe [21,22],
Tararu [25] Tao [23,24], Nahmod, Stefanov, and Uhlenbeck [18], etc. In this paper we generalize wave maps
to exponential wave maps and explore the relationships between wave maps and exponential wave maps.
We study exponential wave maps in the aspect of differential geometry instead of the analytic aspect of
partial differential equations. Exponential wave maps are exponentially harmonic maps on Minkowski spaces.
Exponentially harmonic maps were introduced by Eells and Lemaire [8] in 1990. These maps generalize
usual harmonic maps given by Eells and Sampson [9] (Chiang’s Ph.D. adviser) in 1964. In last four decades,
there have been two reports on harmonic maps by Eells and Lemaire [6,7] in 1978 and 1988, and two
books on harmonic maps, loop groups, and integrable systems by Guest [11] in 1997 and by Helein [12] in
2001. Chiang (with Andrew Ratto and Hongan Sun) studied harmonic maps and biharmonic maps in [1–5],
and Yang (with Hong) studied exponentially harmonic maps in [13]. In 2002, Kanfon, Fuzfa, and Lambert [14]
investigated exponentially harmonic maps, and constructed new models of exponentially harmonic maps which were
coupled with gravitational fields with exponentially scalar fields.
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In Section 2 we compute the first and second variations of the exponential energy explicitly using tensor techniques
which cannot be found in any other paper, and obtain the stability of exponentially harmonic maps in Theorems 2.3
and 2.4. We then review some results of exponentially harmonic maps. In Section 3 we give three examples of
exponential wave maps. We obtain Propositions 3.1 and 3.2 concerning the stability of exponential wave maps by
applying Theorems 2.3 and 2.4. We also prove Theorem 3.3 which relates wave maps, exponential wave maps, and
the conservation law of second-order symmetric tensors. Afterwards, we prove that if f is an exponential wave
map, then the associated energy–momentum tensor is conserved; cf. Theorem 3.5. We then use this theorem to
prove Proposition 3.6, that if f is an exponential wave and pseudo-weakly conformal map, then f is homothetic.
In Section 4 we discuss the applications of exponential wave maps in relativity in two cases: de Sitter spaces and
Friedmann–Lemaitre spaces, by either approximating exponential wave maps by usual wave maps or by coupling
them with gravitational fields with exponential scalar fields.

2. Exponentially harmonic maps

An exponentially harmonic map f : M → N from a m-dimensional Riemannian manifold (Mm, gi j ) to a
n-dimensional Riemannian manifold (N n, hαβ) is a critical point of the exponential energy functional

E( f ) =

∫
M

e|d f |
2
dv =

∫
M

ehαβ f αi f βj gi j
dv, (2.1)

where dv is the volume element on M . In order to compute the Euler–Lagrange equation, we consider a one-parameter
family of maps ft ∈ C∞(M × I, N ) such that ft is the endpoint of a segment starting at f (x) determined in length
and direction by the vector field ḟ (x), and such that the compact support of ḟ (x) is contained in the interior of M .
Then we have

d
dt

E( ft )|t=0 = 2
∫

M
e|d ft |

2
(d ft ,∇t d ft )|t=0 = 2

∫
M

e|d f |
2
(d f,∇ ḟ )dv

= 2
(∫

M
div(w)dv −

∫
M

e|d f |
2
((τ f, ḟ )+ (∇|d f |

2, d f ), ḟ )
)

dv

= −2
∫

M
e|d f |

2
((τ f + (∇|d f |

2, d f ), ḟ ))dv = 0, ∀ ḟ (2.2)

by the divergence theorem, which implies that τ f +(∇|d f |
2, d f ) = 0, where τα( f ) = gi j f αi | j = gi j (( f αi j −Γ k

i j f αk )+

Γ ′α
βγ f βi f γj ) is the tension field, ∇ is the connection on T ∗(M)⊗ f −1T N induced by the Levi-Civita connections on

M and N , div(w) = w
j
| j , w

j
= ehαβ f αi f βj gi j

hαβ f αi ḟ βgi j is a vector field on M .

Definition 2.1. A map f : M → N between two Riemannian manifolds is exponentially harmonic if it satisfies

τ f + (∇|d f |
2, d f ) = 0, (2.3a)

i.e., in terms of local coordinates it satisfies

gi j
(
∂2 f α

∂x i∂x j − Γ k
i j
∂ f α

∂xk + Γ ′α
βγ

∂ f β

∂x i
∂ f γ

∂x j

)
+ gil g jmhβγ

∂ f α

∂x l
∂ f γ

∂xm
∂2 f β

∂x i∂x j

− gil g jmhβγΓ k
i j
∂ f α

∂x l
∂ f β

∂xm
∂ f γ

∂xk + gi j glmhβγΓ ′β
µν

∂ f µ

∂x i
∂ f ν

∂x l
∂ f γ

∂xm
∂ f α

∂x j = 0, (2.3b)

where Γ k
i j and Γ ′α

βγ are the Christoffel symbols of the Levi-Civita connections on M and N respectively.

We first note that if |d f |
2 is constant, then f is exponentially harmonic iff it is harmonic by (2.3). Some properties

of exponentially harmonic maps are different from those of usual harmonic maps. When dim(M) = m = 2, if we
perform a conformal shift on the metric g 7→ ρg, then both energy

∫
M |d f |

2dv and the harmonic map are conformal
invariant. But, for an exponentially harmonic map, the energy (2.1) changes completely.
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Example 1. If u : R2
→ R is an exponentially harmonic function, (2.3) leads to

(1 + u2
x )uxx + 2ux u yuxy + (1 + u2

y)u yy = 0. (2.4)

By the method of separable variables, the solutions are in the form u(x, y) = F(x) + G(y). It follows from (2.4)
that (1 + (Fx )

2)Fxx = −(1 + (G y)
2)G yy = λ. Let p = Fx , q = G y and substitute these into the equation. By

straightforward computation, we can get

F(x) =
1

4λ
{[H+(x; λ; c1)+ H−(x : λ; c1)]

4
+ 2[H+(x; λ; c1)+ H−(x; λ; c1)]

2
} − k1,

where H±(x; λ; c1) = {
3
2 (c1 + λx)± (1 +

9
4 (c1 + λx)2)1/2}1/3. Similarly, we have

G(y) = −
1

4λ
{[H+(y : −λ; c2)+ H−(y; −λ; c2)]

4
+ 2[H+(y; −λ; c2)+ H−(y; −λ; c2)]

2
} − k2.

We also have p = H+(x; λ; c1) + H−(x; λ; c1), q = H+(y; −λ; c2) + H−(y : −λ; c2). Therefore, u(x, y) can be
written with a parametric representation:

x =
1
λ

(
p3

3
+ p − c1

)
, y =

−1
λ

(
q3

3
+ q − c2

)
u(x, y) =

1
4λ
(p4

+ 2p2
− q4

− 2q2)+ constant.

It is easy to check that u(x, y) is not harmonic.

Assume that f = f0 is exponentially harmonic and that ξ =
∂ f
∂t has compact support contained in the interior

of M . The components of ∇tτ f are f αi | j |t =
∂ f αi | j
∂t + Γ ′α

µγ f µi | jξ
γ . We use the curvature formula on M × I → N

and have f αi | j |t = f αi |t | j + R′α
βγµ f βi f γj ξ

µ. But f αi |t = f αt |i = ξα
|i ; therefore the trace of ∇tτ f has components

gi jξα
|i | j + R′α

βγµ f βi f γj gi jξµ. Denote the first term by (4ξ)α . Then we can compute the second variation of the
energy from (2.2):

1
2

d2

dt2 E( ft )|t=0 = −

∫
M

d
dt
(e|d ft |

2
(τ ft + (∇|d ft |

2, d ft ), ξ))|t=0dv

= −

∫
M
(ed f |

2
(∇t (τ f + (∇|d ft |

2, d ft ), ξ)|t=0 + (τ f + (∇|d f |
2, d f ),∇tξ))

+ e|d f |
2
2(∇t d f, d f )(τ f + (∇|d f |

2, d f ), ξ))dv. (2.5)

Since f is exponentially harmonic at t = 0, the second and third terms of (2.5) disappear and by substituting the
components of ∇tτ f we have

1
2

d2

dt2 E( ft )|t=0 = −

∫
M

e|d f |
2
((4ξ + R′α

βγµ f βi f γj gi jξµ, ξ)+ (∇(∇| ḟ |
2, ḟ ), ξ))dv (2.6)

=

∫
M

e|d f |
2
((∇ξ,∇ξ)− R′

αβγµξ
α f βi f γj ξ

µ
+ 2(∇ξ, ξ)2)dv, (2.7)

from integration by parts, d(∇ξ, ξ) = (4ξ, ξ) + (∇ξ,∇ξ) for the first term, and (∇(∇| ḟ |
2, ḟ ), ξ) =

(∇((2∇ ḟ , ḟ ), ḟ ), ξ) = (∇((2∇ξ, ξ), ξ), ξ) = 2(4ξ, ξ3) + 4(((∇ξ,∇ξ), ξ), ξ), and integration by parts,
d(∇ξ, ξ3) = (4ξ, ξ3)+ 3(∇ξ, ξ2

∇ξ) for the second term. We can rewrite (2.6) as

1
2

d2

dt2 E( ft )|t=0 =

∫
M

e|d f |
2
(−(J f (ξ), ξ)+ 2(∇ξ, ξ)2)dv, (2.8)

where

J f (ξ) = 4ξ + R′(d f, d f )ξ = gi jξα
|i | j + R′α

βγµ f βi f γj ξ
µgi j , (2.9)

which is a linear equation for ξ . Solutions of J f (ξ) = 0 are called Jacobi fields.
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Definition 2.2. Let f : M → N be an exponentially harmonic map. If d2

dt2 E( ft )|t=0 ≥ 0, then f is stable.

Theorem 2.3. Let f : M → N be an exponentially harmonic map. If N has non-positive sectional curvature
(i.e. R′

αβγµλ
αηβλγ ηµ ≤ 0 for arbitrary λ, η), then f is stable.

Proof. It follows from (2.7).

Theorem 2.4. Let f : M → N be an exponentially harmonic map. If ξ = ḟ is a Jacobi field, then f is stable.

Proof. It follows from (2.8).

Proposition 2.5 ([13]). Let f : M → N be an exponentially harmonic map, where M is compact without boundary,
RiccM

≥ 0, and RiemN
≤ 0.

(1) Then f is totally geodesic.
(2) If RiccM is positive at at least one point of M, then f is constant.
(3) If RiemN is everywhere negative, then f is either constant or maps M onto a closed geodesic of N .

Proposition 2.6 ([13]). Let Mm
⊂ Rm+1 be a hypersurface which has m principal curvatures with 0 < λ1 ≤

λ2 ≤ · · · ≤ λm , satisfying λm < λ1 + · · · + λm−1. If f : N → M is a stable exponentially harmonic map with
|d f |

2 < 1
2x2

m
min1≤i≤m{λi (

∑m
j=1 λ j − 2λi )}, then f is constant.

Proposition 2.7 (Liouville [13]). Let f : Rm
→ N be an exponentially harmonic map. If f has finite energy and

|d f |
2

≤
m
2 − 1, then f is constant.

3. Exponential wave maps

Let Rm,1 be a m + 1-dimensional Minkowski space with the metric gi j = (−1, 1, 1, . . . , 1) and the coordinates
x0

= t, x1, x2, . . . xm , and (N , hαβ) be an n-dimensional Riemannian manifold. A wave map is a harmonic map on
the Minkowski space Rm,1 with the energy

E( f ) =

∫
Rm,1

hαβ(− f αt f βt + f αx i f βx i )dtdx . (3.1)

The Euler–Lagrange equation describing the critical point of (3.1) is

τα�( f ) = −� f α + Γ ′α
βγ (− f βt f γt + f βx i f γx i ) = 0 (3.2)

which is the wave map equation, where � =
∂2

∂t2 −
∂2

∂x i 2 is the d’Alembertian. The wave map equation is invariant
with respect to the dimensionless scaling f (t, x) → f (ct, cx), c ∈ R. However, the energy is scale invariant only in
dimension m = 2. If f : Rm,1

→ N is a wave map, by (2.9) ξ =
∂ f
∂s is a Jacobi field on the Minkowski space Rm,1

satisfying

Jαf (ξ) = −�ξα + R′α
βγµ(− f βt f γt ξ

µ
+ f βi f γi ξ

µ) = 0,

where { fs} : Rm,1
× I → N is a one-parameter family of maps.

An exponential wave map f : Rm,1
→ N is an exponentially harmonic map on the Minkowski space Rm,1 with

the exponential energy from (2.2):

E( f ) =

∫
Rm,1

ehαβ (−
∂ f α
∂t

∂ f β
∂t +

∂ f α

∂xi
∂ f β

∂xi )dtdx . (3.3)

The Euler–Lagrange equation describing the critical point of (3.3) from (2.3) is

τ�( f )+ 〈∇(−|∂t f |
2
h + |∂x i f |

2
h), d f 〉 = 0, (3.4a)
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i.e., in terms of local coordinates it satisfies

−
∂2 f α

∂t2 +

m∑
i=1

∂2 f α

∂x i 2 + Γ ′α
βγ

(
−
∂ f β

∂t
∂ f γ

∂t
+

m∑
i=1

∂ f β

∂x i
∂ f γ

∂x i

)

+

m∑
i=0

m∑
j=0

gi i g j j hβγ
∂ f α

∂x i
∂ f γ

∂x j
∂2 f β

∂x i∂x j +

m∑
i=0

m∑
j=0

gi i g j j hβγΓ ′β
µν

∂ f µ

∂x i
∂ f ν

∂x j
∂ f γ

∂x i
∂ f α

∂x j = 0. (3.4b)

Example 2. If the energy density e( f ) = − f αt f βt + f αi f βi is constant, then τ�( f ) = 0 if and only if τ�( f ) +

(∇(−|∂t f |
2
h + |∂x i f |

2
h), d f ) = 0. Therefore, f is a wave map with constant energy if and only if it is an exponential

wave map.

Example 3. If u : R1,1
→ R is an exponential wave function, (3.4) becomes

(1 + u2
x )uxx − 2ut ux ut x − (1 − u2

t )ut t = 0. (3.5)

By the method of separable variables, the solutions are u(t, x) = F(t)+G(x). We have from (3.5) that (1+ F2
t )Ft t =

(1 − G2
x )Gxx = λ′. By computation similar to that of Example 1, u(t, x) can be written with a parametric

representation:

t =
1
λ′

(
p3

3
+ p − c3

)
, x =

1
λ′

(
−

q3

3
+ q − c4

)
u(t, x) =

1
4λ′

(p4
+ 2p2

− q4
+ 2q2)+ constant.

It is easy to check that u(x, y) is not a wave function.

Example 4. Let M = R1,1 and N be a surface of revolution in three-dimensional Euclidean space with the metric

ds2
= [1 + (dh/dz)2]dz2

+ h2(z)dφ2,

where r = h(z) is the equation of N in cylindrical coordinates. We can extend the example of a wave map given by
Gu in [10] to an exponential wave map. The first equation of (3.4b) becomes

−
∂2z
∂t2 +

∂2z
∂x2 +

h′h′′

1 + h′2

[
−

(
∂z
∂t

)2

+

(
∂z
∂x

)2
]

−
hh′

1 + h′2

[
−

(
∂φ

∂t

)2

+

(
∂φ

∂x

)2
]

+ (1 + h′2)

[(
∂z
∂t

)2
∂2z
∂t2 −

∂z
∂t
∂z
∂x

∂2z
∂t∂x

−
∂z
∂x
∂z
∂t

∂2z
∂x∂t

+
∂z
∂x
∂z
∂x
∂2z
∂x2

]

+ h2
[
∂z
∂t
∂φ

∂t
∂2φ

∂t2 −
∂z
∂t
∂φ

∂x
∂2φ

∂t∂x
−
∂z
∂x
∂φ

∂t
∂2φ

∂t∂x
+
∂z
∂x
∂φ

∂x
∂2φ

∂x2

]
+ (1 + h′2)

[
h′h′′

1 + h′2

((
∂z
∂t

)4

−
∂z
∂t
∂z
∂x
∂z
∂t
∂z
∂x

−
∂z
∂x
∂z
∂t
∂z
∂x
∂z
∂t

+

(
∂z
∂x

)4
)

−
hh′

1 + h′2

((
∂φ

∂t

)2 (
∂z
∂t

)2

−
∂φ

∂t
∂φ

∂x
∂z
∂t
∂z
∂x

−
∂φ

∂x
∂φ

∂t
∂z
∂x
∂z
∂t

+

(
∂φ

∂x

)2 (
∂z
∂x

)2
)]

+ h2

[
h′

h

((
∂z
∂t

)2 (
∂φ

∂t

)2

−
∂z
∂t

(
∂φ

∂x

)
∂φ

∂t
∂z
∂x

−
∂z
∂x
∂φ

∂t
∂z
∂t
∂φ

∂x
+

(
∂z
∂x

)2 (
∂φ

∂x

)2
)

−
h′

h

(
∂φ

∂t

)2 (
∂z
∂t

)2

−

(
∂φ

∂t

)2 (
∂z
∂x

)2

−

(
∂φ

∂t

)2 (
∂z
∂x

)2

+

(
∂φ

∂x

)2 (
∂z
∂x

)2
]

= 0. (3.6)
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Consider the special initial conditions: when t = 0,

φ = x,
∂φ

∂t
= 0, z = k,

∂z
∂t

= α, (3.7)

where k, α are constants. The solution is invariant with respect to rotation around the z-axis, and therefore φ = x, z =

z(t). (3.6) for z(t) has the form

−
d2z
dt2 −

h′h′′

1 + h′2

(
dz
dt

)2

−
hh′

1 + h′2
+ (1 + h′2)

(
dz
dt

)2 d2z
dt2 + h′h′′

(
dz
dt

)4

= 0, (3.8)

and the initial conditions are z(0) = k, ( dz
dt )0 = α. (3.8) admits a first integral

−(1 + h′2)

(
dz
dt

)2

− h2
+ (1 + h′2)2

1
2

(
dz
dt

)4

=

(
1

√
2
(1 + h′2)

(
dz
dt

)2

−
1 +

√
1 + 2h2

√
2

)(
1

√
2
(1 + h′2)

(
dz
dt

)2

−
1 −

√
1 + 2h2

√
2

)

=

(
1

√
2
(1 + h′2(k))α2

−
1 +

√
1 + 2h2(k)
√

2

)(
1

√
2
(1 + h′2(k))α2

−
1 −

√
1 + 2h2(k)
√

2

)
. (3.9)

The solutions can be represented as∫ z

k

(1 + h′2)1/2dz√
(1 + h′2(k))α2 −

√
1 + 2h2(k)+

√
1 + 2h2(z)

= t (3.10)

or ∫ z

k

(1 + h′2)1/2dz√
(1 + h′2(k))α2 +

√
1 + 2h2(k)−

√
1 + 2h2(z)

= t. (3.11)

If α2(1 + h′2(k))−
√

1 + 2h2(k)+
√

1 + 2h2(z) > 0 in (3.10) for all z, then all of N can be covered. Otherwise, the
surface is covered partially. Similarly for (3.11). The second equation of (3.4) yields to 0 = 0 under the special initial
conditions in (3.7).

Let f : Rm,1
→ N be an exponential wave map. f is stable if d2

dt2 E( ft )|t=0 ≥ 0.

Proposition 3.1. If f : Rm,1
→ N is an exponential wave map such that R′

αβγµξ
α( f βi f γi − f βt f γt )ξ

µ
≤ 0, then f

is stable.

Proof. By (2.6) and (2.7) we have

1
2

d2

dt2 E( ft )|t=0 =

∫
Rm,1

ehαβ ( f αi f βi − f αt f βt )((∇ξ,∇ξ)− R′
αβγµξ

α( f βi f γi − f βt f γt )ξ
µ

+ 2(∇ξ, ξ)2)dtdx

and the result follows from the hypotheses.

Proposition 3.2. Let f : Rm,1
→ N be an exponential wave map. If ξ = ḟ is a Jacobi field on the Minkowski space

Rm,1, then f is stable.

Proof. By (2.8) we have

1
2

d2

dt2 E( ft )|t=0 =

∫
Rm,1

ehαβ ( f αi f βi − f αt f βt )(−(J f (ξ), ξ)+ 2(∇ξ, ξ)2)dtdx,

where

Jαf (ξ) = −�ξα + R′α
βγµ(− f βt f γt ξ

µ
+ f βi f γi ξ

µ).
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If J f (ξ) = 0, then 1
2

d2

dt2 E( ft )|t=0 ≥ 0.

We next study the relationships among wave maps, exponential wave maps, and the conservation law of second-
order symmetric tensors as follows:

Theorem 3.3. Let f : Rm,1
→ N be a non-degenerate map (i.e. d f 6= 0). Then any two conditions of the following

imply the third:

(1) f is a wave map.
(2) f is an exponential wave map.
(3) The second-order symmetric tensor S f = |d f |

2( f ∗h −
1
4 |d f |

2g) is conserved, i.e., div(S f ) = 0, where
g = (−1, 1, . . . , 1), |d f |

2
= −|

∂ f
∂t |

2
+ |

∂ f
∂x i |

2.

Proof. I. (1) and (2) ⇒ (3): Let x0
= t, x1, x2, . . . , xm be the coordinates in Rm,1, and e0 =

∂
∂t , e1 =

(1, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), . . . em = (0, 0, . . . , 1). Set

S = |d f |
2
(

f ∗h −
1
4
|d f |

2
(

−1 0
0 I

))
,

where I is an m × m identity matrix. For X ∈ T (Rm,1) = Rm,1, we compute

(div S f )(X) = (∇ei S)(ei , X) = ∇ei |d f |
2
(

f ∗h −
1
4
|d f |

2
(

−1 0
0 I

))
(ei , X)

= ∇ei |d f |
2
(
( f∗ei , f∗ X)−

1
4
|d f |

2
(

−1 0
0 I

))
(ei , X)+ |d f |

2 (( f∗∇ei ei , f∗ X)

+ ( f∗ei , f∗∇ei X)−
1
4
∇ei |d f |

2
(

−1 0
0 I

)
(ei , X)

)
(τ�( f ) = (∇d f )(ei , ei ) = (∇ei d f )(ei ))

= ((∇|d f |
2, d f )+ |d f |

2τ�( f ), f∗ X)+ |d f |
2( f∗ei , (∇ei d f )X)

−
1
2
∇X

(
−

∣∣∣∣∂ f
∂t

∣∣∣∣2 +

∣∣∣∣ ∂ f
∂x i

∣∣∣∣2
)(

−

∣∣∣∣∂ f
∂t

∣∣∣∣2 +

∣∣∣∣ ∂ f
∂x i

∣∣∣∣2
)

= ((∇|d f |
2, d f )+ |d f |

2τ�( f ), f∗ X)+
1
2
(∇X |d f |

2
|)|d f |

2

−
1
2
∇X

(
−

∣∣∣∣∂ f
∂t

∣∣∣∣2 +

∣∣∣∣∂ f
∂x

∣∣∣∣2
)(

−

∣∣∣∣∂ f
∂t

∣∣∣∣2 +

∣∣∣∣ ∂ f
∂x i

∣∣∣∣2
)

=

((
∇

(
−

∣∣∣∣∂ f
∂t

∣∣∣∣2 +

∣∣∣∣∂ f
∂x

∣∣∣∣2
)
, d f

)
+

(
−

∣∣∣∣∂ f
∂t

∣∣∣∣2 +

∣∣∣∣∂ f
∂x

∣∣∣∣2
)
τ�( f ), f∗ X

)
, (3.12)

where the second and third terms are cancelled out. Therefore,

div S f =

((
∇

(
−

∣∣∣∣∂ f
∂t

∣∣∣∣2 +

∣∣∣∣∂ f
∂x

∣∣∣∣2
)
, d f

)
+

(
−

∣∣∣∣∂ f
∂t

∣∣∣∣2 +

∣∣∣∣∂ f
∂x

∣∣∣∣2
)
τ�( f ), d f

)
Thus, (1) and (2) imply (3).

II. (2) and (3) ⇒ (1): If f is an exponential wave map and S is conserved, then

τ�( f )+

(
∇

(
−

∣∣∣∣∂ f
∂t

∣∣∣∣2 +
∂ f
∂x

∣∣∣∣2
)
, d f

)
= 0 (3.13)

((
−

∣∣∣∣∂ f
∂t

∣∣∣∣2 +
∂ f
∂x

∣∣∣∣2
)
τ�( f )+

(
∇

(
−

∣∣∣∣∂ f
∂t

∣∣∣∣2 +
∂ f
∂x

∣∣∣∣2
)
, d f

)
, d f

)
= 0. (3.14)
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Because f is non-degenerate (i.e. d f 6= 0), so((
−

∣∣∣∣∂ f
∂t

∣∣∣∣2 +
∂ f
∂x

∣∣∣∣2
)
τ�( f )+

(
∇

(
−

∣∣∣∣∂ f
∂t

∣∣∣∣2 +

∣∣∣∣∂ f
∂x

∣∣∣∣2
)
, d f

))
= 0,

and thus (∇(−|
∂ f
∂t |

2
+ |

∂ f
∂x |

2), d f ) = −(−|
∂ f
∂t |

2
+ |

∂ f
∂x |

2)τ�( f ) = −|d f |
2τ�( f ). We substitute it into (3.13), and

get (1 − |d f |
2)τ�( f ) = 0. Suppose that f is not a wave map; there exists a point p ∈ Rm,1 such that τ�( f ) 6= 0

by the continuity of τ�( f ). Therefore, there exists a neighborhood U of p such that |d f |
2
U = 1, but (3.4) implies

τ�( f )|U = 0; a contradiction!
III. (1) and (3) ⇒ (2) is obvious. �

Definition 3.4. f : Rm,1
→ N is pseudo-weakly conformal if there is a smooth function µ : Rm,1

→ R such that
f ∗h = µ

(
−1 0
0 I

)
. f is homothetic if µ is constant.

If f : Rm,1
→ N is pseudo-weakly conformal, then we get

S f =
1
4
(m − 1)(5 − m)µ2g, g =

(
−1 0
0 I

)
. (3.15)

We have: (1) S f = 0 if and only if m = 1 or 5 and f is pseudo-weakly conformal. (2) If f : Rm,1
→ N is pseudo-

weakly conformal such that m 6= 1, 5 and S f is conserved, then f is homothetic. By Theorem 3.3(3) div S f = 0 and
(3.15) we find

0 =
1
2
(m − 1)(5 − m)µµ, j gi j = 0 (0 ≤ i ≤ m),

whence dµ = 0 on Rm,1. Therefore, µ is constant.

The energy–momentum tensor associated with f : Rm,1
→ N is defined by T ( f ) = e|d f |

2
(g − 2 f ∗h), where

g = (−1, 1, 1, . . . 1), |d f |
2

= −|
∂ f
∂t |

2
+ |

∂ f
∂x i |

2. We have

Theorem 3.5. If f : Rm,1
→ N is an exponential wave map, then T ( f ) is conserved.

Proof. Let x0
= t, x1, x2, . . . , xm be the coordinates in Rm,1, and e0 =

∂
∂t , e1 = (1, 0, . . . , 0), . . . em =

(0, 0, . . . 0, 1). Set

T ( f ) = e|d f |
2
((

−1 0
0 I

)
− 2 f ∗h

)
. (3.16)

For X ∈ Rm,1 we compute

div T ( f )(X) = ∇ei T ( f )(ei , X) = ∇ei

[
e|d f |

2
((

−1 0
0 I

)
− 2 f ∗h

)
(ei , X)

]
= ∇ei e

|d f |
2
((

−1 0
0 I

)
(ei , X)− 2( f∗ei , f∗ X)

)
− 2e|d f |

2
(∇ei f ∗h)(ei , X)

= e|d f |
2
[
∇|d f |

2
((

−1 0
0 I

)
(ei , X)− 2∇ei |d f |

2( f∗ei , f∗ X)
)

− 2∇ei ( f∗ei , f∗ X)
]

= e|d f |
2
[

2
((

∇
∂ f
∂t
,
∂ f
∂t

)
+

(
∇
∂ f
∂xi

,
∂ f
∂xi

))
− 2∇ei |d f |

2( f∗ei , f∗ X)

− 2(∇ei f∗ei , f∗ X)− 2( f∗ei ,∇ei f∗ X)
]

= 2e|d f |
2
[((∇X d f )ei , f∗ei )− (∇|d f |

2, d f ), f∗ X − ( f∗ei ,∇ei f∗ X)− (τ�( f ), f∗ X)]

= −2e−|
∂ f
∂t |

2
+|

∂ f
∂x |

2

(
τ�( f )+

(
∇

(
−

∣∣∣∣∂ f
∂t

∣∣∣∣2 +

∣∣∣∣∂ f
∂x

∣∣∣∣2
)
, d f

)
, f∗ X

)
,
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where the first and third terms are cancelled out and τ�( f ) = ∇ei f∗ei . Hence, if f is an exponential wave map, then
T ( f ) is conserved, i.e. div T ( f ) = 0.

Proposition 3.6. If f : Rm,1
→ N is an exponential wave and a pseudo-weakly conformal map such that

µ 6=
1
2 −

1
m−1 (m 6= 1), then f is homothetic.

Proof. By (3.16) T ( f ) = e(m−1)µg(1 − 2µ), g =

(
−1 0
0 I

)
due to the pseudo-weak conformality of f . Since f is an

exponential wave, then by Theorem 3.5 div T ( f ) = 0 we have

e(m−1)µ(m − 1)µ, j gi j (1 − 2µ)+ e(m−1)µgi j (−2µ, j ) = e(m−1)µµ, j gi j ((m − 1)(1 − 2µ)− 2) = 0.

If µ 6=
1
2 −

1
m−1 (m 6= 1), then µ, j gi j = 0 (0 ≤ i ≤ m) which implies that dµ = 0, and hence µ is constant.

The proof of the Liouville-type theorem for an exponentially harmonic map in Proposition 2.7 depends on the
assumption that f has finite energy, i.e.,

∫
Rm |d f |

2dv < ∞, which implies |d f |
2

= 0, and therefore, f is constant. If
we apply it to an exponential wave map f : Rm,1

→ N under the assumption,
∫

Rm,1(−| ft |
2
+
∑m

i=1 | fxi |
2)dtdx < ∞,

which implies that
∑m

i=1 | fxi |
2

= | ft |
2. Then f is not necessarily constant.

4. The applications of exponential wave maps

Let f : Rm,1
→ (N , hαβ) be a C∞ map between two Riemannian manifolds. If we want to relate our context with

physics, we need to modify the exponential energy (3.3) as follows:

E ′
λ( f ) =

∫
Rm,1

eλhαβ (−
∂ f α
∂t

∂ f β
∂t +

∂ f α

∂xi
∂ f β

∂xi )dtdx ≈ λ

∫
Rm,1

[
hαβ(− f αt f βt + f αi f βi )

+
λ

2
(hαβ(− f αt f βt + f αi f βi ))

2
+
λ2

6
(hαβ(− f αt f βt + f αi f βi ))

3
+ · · · .

]
dtdx . (4.1)

When λ is small enough, the Euler–Lagrange equations for E ′
λ( f ) lead to equations which approximate those of

usual wave maps. The equations derived from E ′
λ can be obtained from (3.4) via the shift f 7→

√
λ f (λ > 0).

General relativistic solutions can be locally embedded in Ricci-flat five-dimensional spaces. This is important in
establishing local generality for the work recently developed by Wesson [19], whereby vacuum (4 + 1)-dimensional
field equations give rise to (3+1)-dimensional equations with sources. We briefly describe the mathematical structure
of Wesson’s schemes [20] using the following two postulates.

Postulate 4.1. The fundamental space in which an ordinary four-dimensional spacetime is locally and isometrically
embedded may be described with a five-dimensional manifold M5. The line element of this space is given by
ds̃2

= gabdxadxb which can be put, at least locally, in the form ds̃2
= gi j dx i dx j

+ εφ2dψ2, where {a, b} and
{i, j} run from 0 to 4, and 0 to 3 respectively, xa

= (x i , ψ) are coordinates, gi j = gi j (x i ), φ = φ(xa), ε2
= 1.

Postulate 4.2. The fundamental five-dimensional space satisfies the vacuum field equations (5) R̃ab = 0.

Theorem 4.3 (Campbell). Any analytic n-dimensional Riemannian space can be locally embedded in an (n + 1)-
dimensional Ricci-flat space (cf. [20]).

We would like to discuss the applications of exponential wave maps in relativity as follows:
Case 1: Let S4 be a four-dimensional de Sitter spacetime with the metric

ds2
= dt2

− e2
√

Λ/3t (dx2
+ dy2

+ dz2) (4.2)

where Λ is the cosmological constant. We consider an exponential wave map f : S4 → R (globally) approximated
by a usual wave map which is the extremal of the functional E ′

λ in (4.1). It satisfies a modified version of wave map
equation (3.4) via the shift f 7→

√
λ f (λ > 0), which is written as

f̈ (1 + λ ḟ 2)+ 6
√

Λ/3 ḟ = 0, ( ḟ = ft ) (4.3)
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if the map is restricted to f = f (t). This yields ln( ḟ )+
λ
2 ḟ 2

= −6
√

Λ/3 t + c1, and thus, ḟ e
λ
2 ḟ 2

= c2e−6
√

Λ/3 t .

(i) When t → ∞, f (t) → const.
(ii) When t → 0 and λ is small, f (t) ≈ c2t + c3 which is regular at t = 0.

By Postulates 4.1, 4.2 and Theorem 4.3, S4 can be embedded in a five-dimensional Ricci-flat space S5 [19][p. 333]
and [20, p. 374] with the metric

ds̃2
= Λψ2/3dt2

− Λψ2/3e2
√

Λ/3t (dx2
+ dy2

+ dz2)− dψ2 (4.4)

which induces the metric (4.2) on the hypersurface ψ = ψ0 = ±
√

3/Λ, ψ2
= 3/Λ.

Case 2: (1) Let M4 be a Friedmann–Lemaitre space with the metric

ds2
= dt2

− a2(t)
(

dr2

1 − kr2 + r2dΩ2
)
, dΩ2

= dθ2
+ sin2 θdγ 2. (4.5)

It is known that an exponentially harmonic map f : M4 → R (globally, k = 0) is not regular at t = 0. Kanfon, Fuzfa
and Lambert [14] considered this exponentially harmonic map f : M4 → R on the F–L space without matter coupled
with an exponentially scalar field which can make f regular at t = 0.

(2) (a) The F–L space M4 can be locally embedded in five-dimensional space M5 by Postulates 4.1, 4.2, and
Theorem 4.3 with the metric

(5)d s̃2
= dt2

− a2(t)
(

dr2

1 − kr2 + r2dΩ2
)

+ εφ2dψ2, ε2
= 1. (4.6)

In particular, if k = 0, a2(t) = t , φ2(t) = 1/t , the M5 has the metric by [20, p. 372]

ds̃2
= dt2

− t (dx2
+ dy2

+ dz2)+
ε

t
dψ2.

We assume that M5 has the metric (a(t) is a function of t and φ(t) = 1/a(t))

ds̃2
= dt2

− a2(t)(dx2
+ dy2

+ dz2)+
ε

a2(t)
dψ2. (4.7)

Take ε = −1 (space-like). We consider an exponential wave map f : M5 → R (locally) approximated by a usual
wave map which is the extremal of the functional E ′

λ in (4.1). It satisfies the following modified version of the wave
map equation via the shift f 7→

√
λ f (λ > 0):

f̈ (1 + λ ḟ 2)+ 4
ȧ
a

ḟ = 0

if the map is restricted to f = f (t). This gives a4(t) =
c4
| ḟ |

e−
λ
2 ḟ 2

. For instance, take a(t) = a0(t/t0)1/2, and t0 =
1

2H0

where H0 is the present Hubble constant ( ȧ
a |t=t0 = H0). Then we have

| ḟ |e
λ
2 ḟ 2

=
1

dt2 , d =
a4

0

c4t2
0
.

(i) When t → ∞, f (t) → const.
(ii) When t → 0, and λ is small, f (t) ≈ f0 ±

1
dt , which is not regular at t = 0.

(b) If we consider f : M5 → R coupled with an exponentially scalar field using the metric (4.6),

S( f ) = −
1

2κ

∫
√

−gd4xdy
{(

R̃ − exp
(
λ

2
∂a f ∂b f

)
− Λ

)
+ Lmat

}
(4.8)

where y = ψ represents the fifth new coordinate and the integration restricts to the hypersurface Σ4 defined by
ψ = ψ0 = constant, κ is a coupling constant, Λ is a modified cosmological constant: Λ = 2κ(2Λ0 − 1) with Λ0 is
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the usual cosmological constant, Lmat is the Lagrangian density for matter. By [19, Section 3] (4.8) reduces to

S( f ) = −
1

2κ

∫
√

−gd4x
{(

Rφ − exp
(
λ

2
∂i f ∂ j f

)
− Λ

)
+ Lmat

}
, φ = 1/a(t). (4.9)

The variation of S( f ) leads to Einstein’s equations:(
Ri j −

1
2

Rgi j

)
φ =

1
2

gi j

{(
−e

λ
2 ∂i f ∂ j f

− Λ
)

+ λ∂i f ∂ j f e
λ
2 ∂i f ∂ j f

}
− Rδφ + κT (mat)

i j (4.10)

where T (mat)
i j is the energy–momentum tensor for the matter. Let us assume that f = f (t). Then the field equations

can be written as

1
a

3
(

ȧ
a

)2

+
1
a

(
3k
a2

)
= ρ −

1
2

e
λ
2 ḟ 2
(1 − λ ḟ 2)−

Λ
2

− 6
(

ä
a

+
ȧ2

a2

)
(−a−2)ȧ (4.11)

1
a

((
ȧ
a

)2

+ 2
ä
a

)
+

1
a

(
k
a2

)
= −p −

1
2

e
λ
2 ḟ 2

−
Λ
2

(4.12)

f̈ (1 + λ ḟ 2)+ 4
ȧ
a

ḟ = 0, (4.13)

where ρ is the mass–energy density of matter, and p is the pressure of the fluid.
In particular, if k = 0 and the F–L space is without matter, the above field equations become

1
a

3
(

ȧ
a

)2

= −
1
2

e
λ
2 ḟ 2
(1 − λ ḟ 2)−

Λ
2

− 6
(

ä
a

+
ȧ2

a2

)
(−a−2)ȧ (4.14)

1
a

((
ȧ
a

)2

+ 2
ä
a

)
= −

1
2

e
λ
2 ḟ 2

−
Λ
2
. (4.15)

Let y = ḟ and let H =
ȧ
a be the Hubble constant. We have Ḣ + H2

=
ä
a . Then we can rewrite (4.14), (4.15) and

(4.13) as

3H2
=

(
−

1
2

e
λ
2 ḟ 2
(1 − λ ḟ 2)−

Λ
2

)
a + 6(Ḣ + H2)H + 6H3 (4.16)

a =
H2

+ 2(Ḣ + H2)

−
1
2 e

λ
2 ḟ 2

−
Λ
2

(4.17)

H =
−ẏ(1 + λy2)

4y
. (4.18)

Substitute (4.17) and (4.18) into (4.16) and, as λ is very small, it becomes

1
2

ÿ
y

+
3
8

ÿ ẏ
y2 +

9
16

(
ẏ
y

)3

−
1
2

(
ẏ
y

)
≈ 0. (4.19)

Let z =
ẏ
y , and we have ż + z2

=
ÿ
y . We can rewrite (4.19)

1
2

ż +
3
8

żz +
15
16

z3
≈ 0

which can be put as

dz
dt

=
−15z3

8 + 6z
.
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By integrating we get (t + c)z2
−

6
15 z −

4
15 = 0. Substituting z = ẏ =

dy
dt and solving for dy

dt , we have

dy
dt

=
16 ±

√
256 + 240(t + c)
30(t + c)

y.

This gives solutions

y = c5e
16±

√
256+240(t+c)
30(t+c) , a(t) = c6eHt .

When t = 0, f ′(0) = c5e
16±

√
256+240c
30c exists if c 6= 0. Therefore, f (t) is differentiable and regular at t = 0. It is

interesting to note that the coupling of f with the gravitational field can make f regular at t = 0, which is not the
case for the uncoupled situation.
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